Non-asymptotic theory of random matrices: extreme singular values

نویسندگان

  • Mark Rudelson
  • Roman Vershynin
  • M. Rudelson
  • R. Vershynin
چکیده

The classical random matrix theory is mostly focused on asymptotic spectral properties of random matrices as their dimensions grow to infinity. At the same time many recent applications from convex geometry to functional analysis to information theory operate with random matrices in fixed dimensions. This survey addresses the non-asymptotic theory of extreme singular values of random matrices with independent entries. We focus on recently developed geometric methods for estimating the hard edge of random matrices (the smallest singular value). Mathematics Subject Classification (2000). Primary 60B20; Secondary 46B09

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The singular values and vectors of low rank perturbations of large rectangular random matrices

In this paper, we consider the singular values and singular vectors of finite, low rank perturbations of large rectangular random matrices. Specifically, we prove almost sure convergence of the extreme singular values and appropriate projections of the corresponding singular vectors of the perturbed matrix. As in the prequel, where we considered the eigenvalues of Hermitian matrices, the non-ra...

متن کامل

Stationary Symmetric Α - Stable Discrete Parameter Random Fields

We establish a connection between the structure of a stationary symmetric α-stable random field (0 < α < 2) and ergodic theory of non-singular group actions, elaborating on a previous work by Rosiński (2000). With the help of this connection, we study the extreme values of the field over increasing boxes. Depending on the ergodic theoretical and group theoretical structures of the underlying ac...

متن کامل

Journal club - Random matrix theory in statistics: A review

The article ”Random matrix theory in statistics: A review” was written by D. Paul and A. Aue and published in the Journal of Statistical Planning and Inference in 2015. Random Matrix Theory (RMT) is interested among other topics in describing the asymptotic behavior of the singular values and singular vectors of random matrices. Random matrices emerge in many statistical problems, that can be t...

متن کامل

Introduction to the non-asymptotic analysis of random matrices

2 Preliminaries 7 2.1 Matrices and their singular values . . . . . . . . . . . . . . . . . . 7 2.2 Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Sub-gaussian random variables . . . . . . . . . . . . . . . . . . . 9 2.4 Sub-exponential random variables . . . . . . . . . . . . . . . . . . 14 2.5 Isotropic random vectors . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

M ar 2 00 8 RECTANGULAR RANDOM MATRICES , RELATED CONVOLUTION

We characterize asymptotic collective behavior of rectangular random matrices, the sizes of which tend to infinity at different rates. It appears that one can compute the limits of all non commutative moments (thus all spectral properties) of the random matrices we consider because, when embedded in a space of larger square matrices, independent rectangular random matrices are asymptotically fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010